Skip to main content
King Abdullah University of Science and Technology
KAUST
Main navigation
Home
Publications
ISL Publications Repository
Research Output
analogue integrated circuits
Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits
1 min read ·
Tue, Jan 1 2019
News
analogue integrated circuits
CMOS integrated circuits
Circuits
Olga Krestinskaya, et al., "Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits" IEEE Transactions on Circuits and Systems-I 66 (2), 2019, 719. The on-chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and implementation of a back-propagation algorithm using gradient descent operation for neural network architectures is an open problem. In this paper, we propose analog backpropagation learning circuits for various memristive learning architectures, such as deep neural